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e Mostly jets today, but hopefully with implications for heavy
quarks and spin

|. Jets of our choice: energy flow
Il. Some comments on jet finding and algorithms

l1l. Single particle cross sections and a recent surprise



l. Jets of our choice: energy flow

How we use asymptotic freedom

e Infrared safety & asymptotic freedom:

Q? 6sp(Q%, 1?2, as(p)) = ch(Qz/uz) as'(pn) + O

QP

. cn(l) as™(Q) + O

QP

e e e~ total; jets: a sum over collinear rearrangements and
soft emission organizes all long-time transitions, which must
sum to < 1 by unitarity.



e What we're really looking at here (with local source J)
olf] = lim [d*ze Y 11 /dA(® f,(A(Y)
R—o0 a

x (0] J(O)T[1 7{™ Tyi (0, Riva)J (y)] |0)

(Sveshnikov & Tkachov 95, Korchemsky, Oderda & GS 96, Bauer, Fleming, Lee & GS 08,
Hofman & Maldacena 08)

With T; the energy momentum tensor at the detector
o “Weights” (%) (7) should introduce no new dimensional scale

Short-distance dominated if all f continuous
almost everywhere.

e \We only have to ask “smooth” questions.
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Il. A few comments on algorithms

The basic observation: different jet definitions give different
answers, but we can understand (ideally compute) differences
between different jet definitions.

RHIC jet finding has become sophisticated & inventive.
I'd just like to make a few comments on cone, anti-kt and
Gaussian filter algorithms.
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Cone algorithms

— Cones: Relatively straightforward if you’re looking for one
jet inclusive, but cones can’t stay rigid, they overlap in
general and must be “split or merged.”

— First step is time consuming: identifying cones centered on
total momenta of the enclosed particles (stable cones.)

— Intuitive basis: cone size as an “angular resolution” for
collinear splitting analogous to the “energy resolution” in-
frared massless photons in QED.

— Large cones are subject to large fluctuations from back-
grounds, especially in central AA collisions.

— The weight functions are 0 functions: not so smooth but
still “IRC"” finite.



Recombination algorithms

— Successively combine pairs of “objects”. The most familiar
are kr algorithms, generalized by Salam, Cacciari, Soyez:

AR
. 2 2
d;; = min (kz-g, kjl}) R’LJ, 1>p>-—1

Generally, combine the smallest pairs d;; into new objects.

—p = 1 is the kg algorithm: the softest particles are clus-
tered first, hard particles last. Generally irregular.

— Irregularity may reflect quantum mechanical fluctuations in
gluon emission, so not necessarily a disadvantage.

— Combinatorics of pairs is simpler than the problem of iden-
tifying stable cones.



The anti-k; option

. —2 3.—2
d;; = min (kz’T . ij) RZJ
—p = —1 is the anti-k7 algorithm: clustering dominated by

hard particles. Generally regular.
— Combines the efficiency of k7 with intuitive appeal of cones.

— Relation to energy flow remains implicit, and analysis of
nonperturbative effects is so far mostly by comparison to
event generators.



Gaussian filtering.
(Lai and Cole, 2008)

— Seems to me most closely to energy flow, with a weight
function as above.

— Replaces the O-function weights of cone algorithms with a
truly smooth function.

pr(n, ¢) = | di pp(7) o— (M—=n(R))*—(d—p(7))?
which is

- . 5 1 ) .
pr(n, @) = Jim [dn cosh 17(n) (AA[7;Tyi(xo, RNL) |AA)

% e~ (N=n(7))*—=(d—¢ (7))




Filter output
(contour)

Lego plot (charged/neutral)

Run-5 p + p at /s = 200 GeV
13.5, 8.69 GeV/c dijet

Figure 1: A PHENIX Run-5 p+p at /s = 200 GeV di-
jet event. Charged tracks and photons are shown at the
bottom by a Lego plot. The distribution of filter output
values of the event is shown at the top as a contour plot.
The maxima in the filter density are reconstructed as jet
axes, shown as red lines at the positions on the contour
and Lego plots.

e The jets are found afterwards by identifying local maxima.
from Lai, 2009

Run-5 Cu + Cu at \/syy =200 GeV
19-20% cent., 24.3, 10.3 GeV/c dijet

Figure 2: A PHENIX Run-5 Cu+ Cu at /sy~ = 200 GeV
dijet event at &~ 20% centrality. Charged tracks and pho-
tons are shown at the bottom by a Lego plot. The distri-
bution of filter output values of the event is shown at the
top as a contour plot. The maxima in the filter density
are reconstructed as jet axes, shown as red lines at the
positions on the contour and Lego plots.

e Energy correlations could shed light on jet interactions in me-
dia: ridges, shock waves ...
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l1l. Single particle cross sections

QzaphyS(Qa m, f) = wsp(Q/p, as(n), f) ® ¢rp(p, m)
+O

QP

p = factorization scale;
m= IR scale (m may be perturbative)

e “New physics” in wgp; fi,p “universal”
— think of “xp = 2pp/+/s scaling.” For single-particle cross
section, use ¢ p = D(z), fragmentation functions.

e Almost all collider applications. Enables us to compute

the Energy-transfer-dependence in |(Q, out|A + B, in)|?.
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Evolution

e Whenever there is factorization, there is evolution

d
0= “du In O'phys(Qa m)

dln f dln w
= —P(as(p) = —u
dp dp

)

e Wherever there is evolution there is resummation,
Q /
O'phys(Qam) — O'phys(fb m) exp /q IL,P (as(“ ))

e For example: oppys = EccllT‘;, single-particle inclusive.
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e Fragmentation functions are results of “global” analyses (in-
cluding recently, DSS, AKK ...), from LEP, RHIC, HERA,

Tevatron data.

e Works pretty well, even in sophisticated cases like dihadrons
when full evolution and resummation is taken into account

(Almeida, GS, Vogelsang (2009))
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Figure 6: Comparison to E706 data with a different set of cuts, corresponding to the ones applied
by E711. The data with these cuts are from [11].
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e And the theory is pretty well-understood:

e The schematic proof of factorization for fragmentation:

@) h(p)

h(p)

4

FN

e Known corrections lead to energy loss and more radiation —
as seen in central AA.
At moderate pp higher-power corrections to 1Pl can be im-
portant. (Arleo, Brodsky, Huang & Sickles (0911.4604))

¢ Imagine, then, our surprise with this 1Pl unidentified charged
hadron data ...
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e Year-old CDF Data, as analyzed in papers by Albino, Kniehl
and Kramer (1003.1954) Arleo, d’Enteria and Yoon (1003.2963):
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e This data had been hanging around since last April (0904.1098),
but its significance was lost in a comparison with PYTHIA
tunes. It was published in Phys. Rev. D (2009).

e Both AKK and AEY observe: either a (big) problem with
universality of fragmentation or with the data itself.
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e A QCD description is difficult. Isolated single pions are sup-

pressed compared to jets by at least as(fr/pr)? ~ 10~ at
100 GeV.

e But compared to NLO jets (red) and NLO 1Pl (green) the
data (with green fit) looks like:

(Vogelsang, yesterday)
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e At 100 GeV, the single-particle cross section saturates the jet
cross section.

e This can’t go on, because the 1Pl cross section is much flatter
than the jet cross section, which is confirmed experimentally
at much higher p7p!

e A problem ...but could this be something new and unex-
pected?

e We've been grasping at this straw over the past couple of
days. The next equations are everyone else’s credit and my
fault, as appropriate ...

e For illustrative purposes only!
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e A general form at n = 0; z = xqxp = §/S:

d3o 1 /1
= — /2
d3pr pp T

dzLpartonic(2) w(zT, 2)

e Suppose a narrow resonance at M? = 2S decays to single
hadrons plus unobservable particles ...

w(xr,z) = f(47/20) 6(z — z0)
e Then
d3o

Edng — p% ['partonic(ZO) f(4wle”/ZO)

e and the distribution f(4x3/zy) can be read off from the
data where it dominates QCD fragmentation, while it cuts
off abruptly at 2z = /zp.

e But of course, it should be wide and not narrow, and where
does the rest of the energy go, etc., etc?
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e Conclusions ... Jets in heavy ions have entered a new era,
and multi-energy correlations may be a route to go.

e For one-particle inclusive cross sections, we're still catching
our breath, but one way or another there is a lot to learn.
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